Instrumentation and research methods at IFE:

Challenges with neutron diffraction under high hydrogen pressure

Magnus H. Sørby

senior scientist
Physics department, IFE

Outline

- Institute for Energy Technology and the JEEP II reactor
- Neutron diffraction and hydrogen storage materials
- Plans for neutron diffraction sample cell for measurements under high hydrogen pressure (150-200 bar)

Institute for Energy Technology - IFE

- ~ 650 employees (Kjeller and Halden)
- Annual turnover 100 Meuro (2011) (15% from gov.)
- Organized in 5 sectrors

The Physics Department:

"conduct basic research in materials science based on the JEEP II reactor at Kjeller".

Revealing the atomic structure

The heavier an atom is, the stronger it scatters X-rays.

Li₃AlH₆ seen by X-rays

Revealing the atomic structure

The heavier an atom is, the stronger it scatters X-rays.

... not so with neutrons!

Li₃AlH₆ seen by X-rays

Li₃AID₆ seen by neutrons

The benefits of neutrons

• There is no systematic correlation between atomic number and the scattering length.

The neutron interacts weakly with matter.

Neutrons penetrate stuff...

5 mm Al

X-ray
$$\lambda = 1.54 \text{ Å}$$

$$I/I_0 = 10^{-29}$$

Neutrons
$$\lambda = 1.0 \text{ Å}$$

$$I/I_0 = 0.996$$

X-ray
$$\lambda = 0.2 \text{ Å}$$

$$I/I_0 = 0.02$$

The benefits of neutrons

 There is no systematic correlation between atomic number and the scattering length.

The neutron interacts weakly with matter.

The neutron has a magnetic moment.

Instruments in H2FC

Neutron diffractometers PUS and ODIN (60 days each for H2FC)

SANS (Small Angle Neutron Scattering) (60 days for H2FC)

Instuments at IFE

PUS

$$\lambda = 0.75-2.60 \text{ Å}$$

$$T_{\text{sample}} = 9 - 1300 \text{ K}$$

-
$$P = 0 - 8 \text{ bar}$$

$$\Delta d/d \sim 3 *10^{-3}$$

- Flux on sample $\sim 1.5 * 10^5 \text{n/cm}^2 \text{s}$

Typical range: $2\theta = 10-130^{\circ}$

ODIN

– a new powder diffractometer

- Take-off angles 75-120°
- $\Delta d/d \sim 1.3*10^{-3}$
- Flux on sample $1.4*10^6$ n/(cm²s)
- 4 detectors, each 50x80cm²

Measurement under hydrogen pressure

- Sufficient mechanical strength
- Inert to hydrogen
- Low neutron absorption
- Weak scattering

Current setup (max 8 bar)

Measurement under hydrogen pressure

- Sufficient mechanical strength
- Inert to hydrogen
- Low neutron absorption
- Weak scattering

Current setup (max 8 bar)

Vanadium or «zero-scattering» alloys (e.g Ti₆₈Zr₃₂)

- Sufficient mechanical strength
- Inert to hydrogen
- Low neutron absorption
- Weak scattering

Vanadium or «zero-scattering» alloys (e.g Ti₆₈Zr₃₂)

- Sufficient mechanical strength
- Inert to hydrogen
- Low neutron absorption
- Weak scattering

Vanadium or «zero-scattering» alloys (e.g Ti₆₈Zr₃₂)

 $P_{\text{max}} \sim 50 \text{ bar}$

- Sufficient mechanical strength
- Inert to hydrogen
- Low neutron absorption
- Weak scattering

Steel or inconel alloy

Yartys et al. 2011

* - sample container

- Sufficient mechanical strength
- Inert to hydrogen
- Low neutron absorption
- Weak scattering

Single crystal sapphire tube

Walker et al. 2010

Can be oriented so that Bragg spots from the single crystal are avioded in the direction of the detector.

- Sufficient mechanical strength
- Inert to hydrogen
- Low neutron absorption
- Weak scattering

Material	T /°C	P / bar	pros	cons
Al	< 100		-Low background	-Primary and multiple scattering -Temperature limit
Quartz	320	5	-No Bragg peak	-Fragile -Amorphous background -React with molten comples hydrides -Thermal isolator
Inconel	<200	70		-Primary and multiple scattering
Cu-coated V	< 400	< 40	-Minor Bragg peaks	-Defect in coating
TiZr alloy with a thin stainless steel inner liner	300	1210	-Expands the range in p, T	-Primary and multiple scattering
Sapphire	80 (500)	100 (1500)	-Diffraction spots can be avoided	-Brittle -React with molten complex hydrides -Thermal isolator

Idea!

What do we need for a measurment?

- Sample in powdered form
- Fairly large amount of sample, at least 1 cm³
- Deuterated samples are much preferred
- All sample handling and measurement can be done under inert atomsphere.

SANS (Small Angle Neutron Scattering)

Uses small scattering angles and neutrons with "long" wavelength (5-10 Å) to see "large" things.

Materials investigated by SANS

- Polymers
- Clay
- Nano-carbon
- Micelles
- Hydrogen storage materials in nanoscopic pores

- What do we need for a measurment?
 - Sample in powdered or liquid form
 - Fairly large amout of sample, about 0.5 cm³

Conclusion

- IFE offers Powder Neutron Diffraction and Small Angle Neutron Scattering to the H2FC infrastructure.
- Improved facilities for diffraction under high hydrogen pressure is under planning.

