

Health & Safety Executive/Health & Safety Laboratory Stefan Ledin

Presented at the Second Technical Summer School on Hydrogen and Fuel Cells on 2013-09-24

Content

- Introduction
- Sensor capability wish list
- Overview of hydrogen sensor types
 - Existing sensor types
 - New technologies
 - Problems with sensors
- When things go wrong A cautionary tale
- HSL hydrogen sensors
 - Type and specifications
 - Why we choose these types
- Summary and conclusions
- Acknowledgements

Introduction

- Where might one find H₂ sensors?
 - In the hydrogen generation process from carbon-containing fuel reforming or electrolysis;
 - In hydrogen storage and distribution, at production sites and filling stations; and
 - In hydrogen fuel cell/combustion systems. These can be stationary, for example power production or uninterruptible power supply, or mobile, for example automotive.
- Why do we use H₂ sensors?
 - To detect leaks in the system
 - To monitor hydrogen concentrations in experiments
 - To monitor hydrogen concentrations in fuel cells

Sensor Capability Wish List

- Sensor range
 - → 0-10 % v/v for safety
 - 0-100 % v/v for fuel cell systems
- Safe performance
- Reliable and accurate
 - Low uncertainty in the readings
- Stable signal with low noise
- Robustness
- Low sensitivity to
 - → Temperature
 - Pressure
 - Relative humidity
 - Gas flow rates

- Fast response and recovery time
- Long life time
- Low cross sensitivity
- Low power consumption
- Low cost
- Small size
- Simple installation and maintenance
 - Long service intervals
- Simple integration into the system

We are not asking a lot of the sensors then ...

Types of Hydrogen Sensors—1(2)

- There are a number of different types of hydrogen sensors
 - The method of detecting the gas differs
 - Their range of applicability
 - Their sensitivity to environmental conditions
 - Temperature
 - Pressure
 - Relative humidity
 - Other gases
 - Their response time
 - Usually expressed in terms of t₉₀
 - Their accuracy / resolution
 - Their susceptibility to poisoning

The response time t₉₀ is defined as the time it takes for the output from the sensor to reach 90 % of its final value after being subjected to a step change in concentration

Types of Sensors—(2/2)

Types of Sensors—1(4)

Туре	Principle	Advantages	Disadvantages
Electrochemical	H ₂ oxidation at Platinum sensing electrode	Quite selectiveLow power consumptionPoison resistant	 Some cross- sensitivity to CO Narrow temperature range Short lifespan of 2 years
Thin film	Reversible resistance increase	 Rapid response Wide detection range Does not need O₂ 	 Prone to poisoning Sensitive to total pressure Requires heating to 150 °C

Types of Sensors—2(4)

Type	Principle	Advantages	Disadvantages
ChemFET	Hydrogen absorption	 Wide detection range Does not need O₂ Low power consumption 	 Prone to poisoning Sensitive to total pressure Needs to be heated to 150 °C
Catalytic	Catalytic oxidation on heated bead	 Acceptable lifespan(?) Wide operational temperature range 	 Not selective High power consumption Poisoning Requires 5-10 % v/v O₂ High maintenance

Types of Sensors—3(4)

Туре	Principle	Advantages	Disadvantages
Thermal conductivity	High thermal conductivity changes	 Quite selective Poison resistant Long term stability Does not require O₂ 	 Not as sensitive as ChemFETs Cross-sensitive to helium Requires heating
Semiconductor	Surface conductivity changes	Commercially availableAcceptable lifespan	 Not selective High power consumption Sensitive to humidity and temperature

Types of Sensors—4(4)

Type	Principle	Advantages	Disadvantages
Mass Spectrometry	Charge change detector	SpecificLow limit of detection	ExpensiveBulkyFragileNeeds skilled operator
Ultrasonic	Detection of ultra sound	 Not susceptible to poisoning or humidity Non-directional 	 Not specific to H₂ Interference from background noise Only detects high pressure leaks

Comparison of Sensor Types

Туре	Range ¹	Resolution ¹	Response [s]	Lifespan [years]
Electrochemical	0.0-0.2 % 0.0-2.0 %	2-10 ppm	30	1-2
Thin film + ChemFET	0.1-100 % 10-1000 ppm (with ChemFET)	0.1 % 10 ppm (with ChemFET)	5	?
Catalytic	0-100 % LEL	1 % LEL	20	3
Thermal conductivity	0.0-10 %	0.5 % range	20	10+
Semiconductor	50-5000 ppm	50 ppm	30	?

Note: the lifespan of a sensor depends on a number of factors, for example where it is mounted, the environmental conditions in which it operates, maintenance regime, ...

1. Beware of change of units

Sensor Development—1(3)

Type	Principle	Advantages	Disadvantages
Thick film	Resistance change	Low costSimple method	 Susceptible to poisoning
Optoelectronic	 Induced mechanical stress Interferometry Optical characteristics 	 Very low power consumption No electromagnetic interference Intrinsically safe 	Sensitive to humidity and temperature
Nanotechnology	Electrical resistance	Unproven	Unproven

Sensor Development—2(3)

Туре	Principle	Advantages	Disadvantages
MOS Schottky diodes	Change in electronic properties	 Low concentrations detected Can operate in inert and oxygen-containing atmospheres 	• Response affected by presence of O ₂
Surface acoustic wave	Sorption ⇒ change of resonance frequency	Low powerMicro-scale	Susceptible to water vapour

This is by no means an exhaustive list

Sensor Development—3(3)

- Introduction of mobile fuel cell applications (for example cars) in particular is driving the sensor technique development forward
- Techniques under development (in reduced order of research activity)
 - Electrical resistance based technologies (40 %)
 - Optical sensors (15 %)
 - Catalytic sensors (5 %)
 - → Electrochemical sensors (5 %)
 - Acoustic sensors

Reference:

Hübert, T., Boon-Brett, L., Black, L., and Banach, U. (2011). Hydrogen Sensors-A review, Sensors and Actuators B **157**(2):329-352.

Issues with Sensors

- There are a number of operational issues
 - Accuracy and range
 - Calibration—frequent and/or tricky
 - Drifting
 - Cross-sensitivity to other gases
 - Poisoning by other gases
 - Interference by background noise
 - Longevity
 - Response time
 - Sensitivity to pressure, temperature and/or relative humidity
 - False alarms (hydrogen leak detection) / interaction with the system
 - Optimal/appropriate siting
- The sensor type to use is likely
 - To be a compromise; or
 - To be a combination of different types of sensors

Case Study – Hydrogen deflagration in a machine

- In the machine, mechanical parts had metal vapour deposited onto its surface prior to being re-machined
- Hydrogen was being used in the process
- There was a build-up of hydrogen which was detected by the sensor
- However, the system did not shut down
- The hydrogen was ignited, resulting in a deflagration that injured the operator and caused damage to the machine

Lesson: Use hydrogen sensors to detect build-up of hydrogen, but also ensure that an "alarm" is acted upon.

When Things Go Wrong—2(2)

Gas flow meter cabinet—front view

Machine – rear view

Flow meter cabinet – rear view

Types of Hydrogen Sensors @ HSL

Thermal conductivity sensor

SEC H₂ 20000 4SE 5V \(\ldot\)

→ Electrochemical sensor

VIAMED R17

Oxygen depletion sensor

XENSOR TCG-3880

- Thermal conductivity sensor
- Low voltage required: 8-45 mV
- 📒 Range: 0-100 % H₂
 - Realistic lower detection limit around 700-1000 ppm
- Readings may be affected by temperature and relative humidity
- Damp conditions can lead to corrosion of leads
- H₂ specific
- Response time:
 - 10 ms —naked sensor
 - 1000 ms shielded sensor

Naked sensor—reading affected by the flow of gas

SEC H₂ 20000 4SE 5V

- Electrochemical sensor
- Hydrogen specific
- Solid State electrolyte
- Cross-sensitive
- Response time: 10-20 s
- Limited lifespan
 - 1-2 years (though the manufacturer claims 5 years)
 - Electrolyte is consumed
- Range:
 - → 0-2 % v/v H₂ (std)
 - → 0-4 % v/v H₂ (max)

- Sensor reading keeps drifting when using the 0-4 % v/v range ⇒
 - Calibration is tricky
 - What is the actual hydrogen concentration?

VIAMED R17

- Oxygen depletion sensor
- Insulated body, exposed head
- Silver foil to reduce effect of solar radiation
- Rapid response: t₉₀ of the order of 2 s
- Range: 5-100 % v/v H₂
- Sensitive to
 - Temperature, pressure and relative humidity
 - Poor performance at low ambient temperatures (< 5 °C) due to the compensation algorithm
- Requires frequent calibration
 - 10-20 min runtime max

Sensor in-situ

Why We Choose These Sensors

- VIAMED Oxygen depletion sensor
 - Partly for historical reasons
 - This was almost the only available type of sensor at the time
- XENSOR TCG-5830 Thermal conductivity sensor
 - Low voltage requirement
 - Fast response time
- SEC H₂ 2000 4SE 5V Electrochemical sensor
 - Hydrogen specific
- Experience from the Instrumentation Special Interest Group in the HySafe Network of Excellence (EU FP6)
- XENSOR and SEC sensors are used together and appear to complement each other well

Note: A sensor of oxygen depletion type is not necessarily the most suitable choice of sensor for hydrogen measurements

Summary and Conclusions

Summary

- There are a number of different types of sensors
- Sensor choice-application specific
- Each type has its merits
- ## HSL has gained extensive experience of using:
 - Thermal conductivity sensors
 - Electrochemical sensors
 - Oxygen depletion sensors
- What we experienced when using the sensors (sensor type dependent!)
 - Rapid response times
 - Drifting
 - Constant recalibrations needed
 - Sensitivity to temperature, pressure and humidity

Conclusions

- These sensors are mostly fit for purpose, but
 - Calibration is vitally important
 - Drifting is an issue
 - Sensitivity to temperature, pressure and humidity
 - Poisoning or cross-sensitivity
- Oxygen depletion sensors are perhaps not the best option for hydrogen concentration measurements
- A combination of thermal conductivity and electrochemical sensors appears to work well
- A number of "new" technologies are coming on-stream

Colleagues at HSL
Colleagues at HSE
Partners in EU projects
Fuel Cell & Hydrogen/Joint Undertaking
European Commission

Thank You for Your Attention!

Any Questions?

