

Modelling of Fires with Computational Fluid Dynamics Status of Modelling

Stefan Ledin Health & Safety Executive/Health & Safety Laboratory

Presented at the Second Technical Summer School on Hydrogen and Fuel Cells on 2013-09-25

8 Introduction

Content

- 8 Important Physical Processes
 - Examples of fire scenarios
- 8 What we need to model
- What can be modelled with an acceptable(?) degree of accuracy
- 8 What cannot currently be modelled
- 6 Conclusions

- Sombustion is very complex!! It involves
 - → Large number of chemical species, even for simple fuels
 - Large number of reactions
- Important questions to ask:
 - What do we know about the problem?
 - → What do we need model?
 - Do we have an appropriate model?
 - → How successful (accurate) can we expect our model predictions to be?
- Experiments (physical and numerical) and modelling are complementary

Important Physical Processes

- 📒 Ignition
- 🛚 Blow-out
- 🚳 Blow-off
- 📒 Lift-off
- 8 Extinction
- 8 Chemical kinetics
- Interactions between different physical processes
 - Flame-turbulence
 - Flame-radiation
 - Turbulence-radiation
- Interaction with obstacles or walls

Visible jet flame from a shrouded vent

Examples of Fire Scenarios—1(2)

🗧 Jet flame

- → High pressure release
- Jet released approx. 1.25 m above ground
- Essentially free jet with some interaction with the ground further downstream
- Nearly invisible flame
- Thermal imaging camera required to properly visualise the flame

Examples of Fire Scenarios—2(2)

🗧 Jet flame

- → High pressure release
- Jet released at about
 1.25 m above the ground
- Horizontal distance to the plate is around 2.5 m
- Flame impacts on a metal plate at 60° to the ground
- Test performed as part of the HyPer project

6 Combustion (one from)

- Non-premixed combustion
- Partially premixed combustion
- Premixed combustion

Sombustion (one from)

- → Non-premixed combustion
- Partially premixed combustion
- Premixed combustion

Heat transfer (possibly all of)

- Conduction
- Convection
- Radiation

Combustion (one from)

- Non-premixed combustion
- → Partially premixed combustion
- → Premixed combustion

Heat transfer (possibly all of)

- → Conduction
- Convection
- → Radiation

8 Fluid mechanics (possibly all of)

- Laminar flow
- Transitional flow
- Turbulent flow

Combustion (one from)

- Non-premixed combustion
- Partially premixed combustion
- Premixed combustion

Heat transfer (possibly all of)

- → Conduction
- → Convection
- → Radiation
- Fluid mechanics (possibly all of)
 - → Laminar flow
 - → Transitional flow
 - Turbulent flow
- Interactions (possibly all of)
 - Interaction with structures
 - Interactions between different physical processes

What Can We Model

Sombustion processes

- Detailed chemical kinetics hydrogen-air mixture
 - 9 species
 - 29 reactions
- Reduced chemical kinetics
- Simplified models
 - Laminar flamelets
 - Single irreversible global reaction
 - Conditional moment closure
 - Empirical correlations
- Non-premixed combustion
- Partially premixed combustion
- Premixed combustion

- 😸 Lift-off
 - → Crude approach
- 🚳 Ignition
- Shorter time steps are usually required
- Set of stiff equations to solve
- Detailed/reduced chemical kinetics is not always required
- Modelling detailed and reduced chemical kinetics for industrial applications is not always feasible due to the demand it places computer resources

What We Cannot Readily Model

- 🚳 Blow-off
- 😚 Blow-out
- Sombustion in vitiated air
- 8 Extinction
 - Recent modelling suggests that just maybe this is possible
- 8 Flames from cracks
- 🍪 Heat transfer
 - Convection
 - Radiation
- ٤ Lift-off (accurately)

These are listed in alphabetical order and not in order of importance

Starbulence

- Not directly part of the combustion processes of course
- However, the coupled nature of the flow means turbulence matters a great deal
- 8 Various interactions
 - Flame-turbulence interaction
 - Flame-radiation interaction
 - Turbulence-radiation interaction
 - Flame-droplet interactions
 - Flames interacting with obstacles
- Ventilation-controlled fires

Conclusions

- A number of physical process are important
- Sombustion processes are very complex
- Combustion problems lead to systems of equations that are highly non-linear and strongly coupled
- We can model some of these processes
- Solution There are also a number of processes for which
 - Our theoretical understanding is incomplete; and/or
 - Our models do not represent the physical processes

- Should we despair?
 - No, we can model a fair number of scenarios with acceptable accuracy, but
 - Clearly more research is required
 - > Physical experiments
 - Numerical experiments
 - Model development

Acknowledgements

Colleagues at HSL Colleagues at HSE Partners in EU projects European Commission

Health & Safety Laboratory | Stefan Ledin

Thank You for Your Attention!

Any Questions?

Health & Safety Laboratory | Stefan Ledin